Sign in to follow this  
Lathander

Pixi v4 Shaders

Recommended Posts

Hello,

I recently started to experiment a little bit with HTML5 Game Development.

Now I found a some Lightmapping Shader Example on the Internet, which is build on Pixi v3. 

I currently use Pixi v4 and I dont get the example to work, since it looks like they changed a lot on shaders since v3. 

This is the website with the example code: http://codepen.io/Oza94/pen/EPoRxj

Here is the code I am executing: 

/**
 * Created by Fabien on 07.09.2016.
 */

var lightUrl = '';
var tiledmapUrl = '';

var fragmentShader = [
    'precision mediump float;',
    'varying vec4 vColor;',
    'varying vec2 vTextureCoord;',
    'uniform sampler2D u_texture; //diffuse map',
    'uniform sampler2D u_lightmap;   //light map',
    'uniform vec2 resolution; //resolution of screen',
    'uniform vec4 ambientColor; //ambient RGB, alpha channel is intensity ',
    'void main() {',
    '    vec4 diffuseColor = texture2D(u_texture, vTextureCoord);',
    '    vec2 lighCoord = (gl_FragCoord.xy / resolution.xy);',
    '    vec4 light = texture2D(u_lightmap, vTextureCoord);',
    '    vec3 ambient = ambientColor.rgb * ambientColor.a;',
    '    vec3 intensity = ambient + light.rgb;',
    '    vec3 finalColor = diffuseColor.rgb * intensity;',
    '    gl_FragColor = vColor * vec4(finalColor, diffuseColor.a);',
    '}'
].join('\n');

function defaultValue(inputValue, defaultValue) {
    inputValue = typeof inputValue !== 'undefined' ? inputValue : defaultValue;
    return inputValue;
}


function LightmapFilter(lightmapTex, ambientColor, resolution) {
    this.lightmapTex = lightmapTex;


    ambientColor = defaultValue(ambientColor, [0.3, 0.3, 0.7, 0.5]);
    resolution = defaultValue(resolution, [1.0, 1.0]);

    PIXI.AbstractFilter.call(
        this,
        null,
        fragmentShader,
        {
            u_lightmap: {
                type: 'sampler2D',
                value: lightmapTex
            },
            resolution: {
                type: '2f',
                value: new Float32Array(resolution)
            },
            ambientColor: {
                type: '4f',
                value: new Float32Array(ambientColor)
            }
        });
}

LightmapFilter.prototype = Object.create(PIXI.AbstractFilter.prototype);
LightmapFilter.prototype.constructor = LightmapFilter;


// need to preload fucking image since RenderTexture does not support async loading
var img = new Image();
img.crossOrigin = "Anonymous";
img.src = lightUrl;
img.onload = function () {
    var stage = new PIXI.Container();

    // create a renderer instance.
    var renderer = PIXI.autoDetectRenderer(400, 300);

    // draw lightmap on this render target
    var renderTexture = new PIXI.RenderTexture(renderer, 400, 300);

    // tex creation
    var lightBaseTexture = new PIXI.BaseTexture(img);
    var lightTexture = new PIXI.Texture(lightBaseTexture);
    var lightTexture2 = new PIXI.Texture(lightBaseTexture);

    var lightSprite = new PIXI.Sprite(lightTexture);
    var lightSprite2 = new PIXI.Sprite(lightTexture2);

    // ADDITIVE blend mode for pretty intersecting lights
    lightSprite.blendMode = PIXI.BLEND_MODES.ADD;
    lightSprite2.blendMode = PIXI.BLEND_MODES.ADD;

    // move a little bit one light on right to check proper lights intersect
    lightSprite.x = 100;

    // back background of the lightmap
    var lightmapBg = new PIXI.Graphics();
    lightmapBg.beginFill(0x000000);
    lightmapBg.drawRect(0, 0, 400, 300); // size of our renderer
    lightmapBg.endFill();

    // create the lightmap
    var lightmapContainer = new PIXI.Container();
    lightmapContainer.addChild(lightmapBg);
    lightmapContainer.addChild(lightSprite);
    lightmapContainer.addChild(lightSprite2);
    renderTexture.render(lightmapContainer);

    // here is our map, a simple texture for the example
    var tiledmapSprite = new PIXI.Sprite.fromImage(tiledmapUrl);

    // tada magic - apply our lightmap to our tiledmap
    tiledmapSprite.filters = [new LightmapFilter(renderTexture)];

    // add the tiledmap to stage
    stage.addChild(tiledmapSprite);

    document.body.appendChild(renderer.view);

    // rendering code
    requestAnimationFrame( animate );

    function animate() {

        requestAnimationFrame( animate );

        // render the stage
        renderer.render(stage);
    }
};

If I try to run this Pixi v4 I get the following error: 

gl.getProgramInfoLog() Varyings with the same name but different type, or statically used varyings in fragment shader are not declared in vertex shader: vColor

this is why I changed the code to this: 

var fragmentShader = [
    'precision mediump float;',
    'varying vec4 vColor;',
    'varying vec2 vTextureCoord;',
    'uniform sampler2D u_texture; //diffuse map',
    'uniform sampler2D u_lightmap;   //light map',
    'uniform vec2 resolution; //resolution of screen',
    'uniform vec4 ambientColor; //ambient RGB, alpha channel is intensity ',
    'void main() {',
    '    vec4 diffuseColor = texture2D(u_texture, vTextureCoord);',
    '    vec2 lighCoord = (gl_FragCoord.xy / resolution.xy);',
    '    vec4 light = texture2D(u_lightmap, vTextureCoord);',
    '    vec3 ambient = ambientColor.rgb * ambientColor.a;',
    '    vec3 intensity = ambient + light.rgb;',
    '    vec3 finalColor = diffuseColor.rgb * intensity;',
    '    gl_FragColor = vColor * vec4(finalColor, diffuseColor.a);',
    '}'
].join('\n');

var vertexShader = [
    'precision lowp float;',
    'attribute vec2 aVertexPosition;',
    'attribute vec2 aTextureCoord;',
    'attribute vec4 aColor;',

    'uniform mat3 projectionMatrix;',

    'varying vec2 vTextureCoord;',
    'varying vec4 vColor;',

    'void main(void){',
    '   gl_Position = vec4((projectionMatrix * vec3(aVertexPosition, 1.0)).xy, 0.0, 1.0);',
    '   vTextureCoord = aTextureCoord;',
    '   vColor = vec4(aColor.rgb * aColor.a, aColor.a);',
    '}'
].join('\n');

function defaultValue(inputValue, defaultValue) {
    inputValue = typeof inputValue !== 'undefined' ? inputValue : defaultValue;
    return inputValue;
}

function LightmapFilter(lightmapTex, ambientColor, resolution) {
    this.lightmapTex = lightmapTex;


    ambientColor = defaultValue(ambientColor, [0.3, 0.3, 0.7, 0.5]);
    resolution = defaultValue(resolution, [1.0, 1.0]);

    PIXI.Filter.call(
        this,
        vertexShader,
        fragmentShader,
        {
            u_lightmap: {
                type: 'sampler2D',
                value: lightmapTex
            },
            resolution: {
                type: '2f',
                value: new Float32Array(resolution)
            },
            ambientColor: {
                type: '4f',
                value: new Float32Array(ambientColor)
            }
        });
}

LightmapFilter.prototype = Object.create(PIXI.Filter.prototype);
LightmapFilter.prototype.constructor = LightmapFilter;


// need to preload fucking image since RenderTexture does not support async loading
var img = new Image();
img.crossOrigin = "Anonymous";
img.src = "assets/lightSource.png";
img.onload = function () {
    var stage = new PIXI.Container();

    // create a renderer instance.
    var renderer = PIXI.autoDetectRenderer(400, 300);

    // draw lightmap on this render target
    // var renderTexture = new PIXI.RenderTexture(renderer, 400, 300);
    var renderTexture = PIXI.RenderTexture.create(400,300);

    // tex creation
    var lightBaseTexture = new PIXI.BaseTexture(img);
    var lightTexture = new PIXI.Texture(lightBaseTexture);
    var lightTexture2 = new PIXI.Texture(lightBaseTexture);

    var lightSprite = new PIXI.Sprite(lightTexture);
    var lightSprite2 = new PIXI.Sprite(lightTexture2);

    // ADDITIVE blend mode for pretty intersecting lights
    lightSprite.blendMode = PIXI.BLEND_MODES.ADD;
    lightSprite2.blendMode = PIXI.BLEND_MODES.ADD;

    // move a little bit one light on right to check proper lights intersect
    lightSprite.x = 100;

    // back background of the lightmap
    var lightmapBg = new PIXI.Graphics();
    lightmapBg.beginFill(0x000000);
    lightmapBg.drawRect(0, 0, 400, 300); // size of our renderer
    lightmapBg.endFill();

    // create the lightmap
    var lightmapContainer = new PIXI.Container();
    lightmapContainer.addChild(lightmapBg);
    lightmapContainer.addChild(lightSprite);
    lightmapContainer.addChild(lightSprite2);
    //renderTexture.render(lightmapContainer);
    renderer.render(lightmapContainer,renderTexture);

    // here is our map, a simple texture for the example
    var tiledmapSprite = new PIXI.Sprite.fromImage("assets/tileMap.png");

    // tada magic - apply our lightmap to our tiledmap
    tiledmapSprite.filters = [new LightmapFilter(renderTexture)];

    // add the tiledmap to stage
    stage.addChild(tiledmapSprite);

    document.body.appendChild(renderer.view);

    // rendering code
    requestAnimationFrame(animate);

    function animate() {

        requestAnimationFrame(animate);

        // render the stage
        renderer.render(stage);
    }
};

Now no more error pops up, but the screen stays black. 

screen0.jpg

This screen shows the error message

screen1.jpg

This screen shows the error log after my "fix" 

 

screen2.jpg

This last screenshot shows how it just works with pixi v3

Hopefully someone can help

 

Thank you in advance 

Lathander

Share this post


Link to post
Share on other sites

I'm working on addon for pixi-display plugin right now. It will be available in two days or so, and it'll be easy to use, no need of knowing all these stuff. Basically, you'll be able to apply any filters and blendmodes on the scene in a bulk. 100 lights? Ok, it will work just fine.

Your plugin will be first to use that, then I'll ask guys if its worth to putting into vanilla RPGMV :)

Share this post


Link to post
Share on other sites
1 hour ago, ruslanchek said:

Sounds good! So, why vColor is not available now in PIXI v4? 

Filters used to use the "texture shader" by default, which was the default shader we used for Sprites. It had vColor because Sprites have tint. The reality is, Filters don't have tint so it doesn't make sense for it to be there. The default vertex shader used for Filters in v4 can be found here:

https://github.com/pixijs/pixi.js/blob/3f05bf1284035d25a8f483b278d4dc377b1d23be/src/core/renderers/webgl/filters/Filter.js#L112

Along with the default fragment shader shortly after.

Share this post


Link to post
Share on other sites

i wonder how fast with shader in pixi.to make game with mobile.

i'm saving using shader.. 

if function that create by shader, can make with image or hard working, i will do now..

but sometimes i concern which one is good to use between performance(optimization) and easy or good expression

can you give me answer?

how fast with shader specially on mobile like ios,android(pc is not becuase it's as fast as we make  game)

thx..!

Share this post


Link to post
Share on other sites
On 10/19/2016 at 6:36 PM, xerver said:

Filters used to use the "texture shader" by default, which was the default shader we used for Sprites. It had vColor because Sprites have tint. The reality is, Filters don't have tint so it doesn't make sense for it to be there. The default vertex shader used for Filters in v4 can be found here:

https://github.com/pixijs/pixi.js/blob/3f05bf1284035d25a8f483b278d4dc377b1d23be/src/core/renderers/webgl/filters/Filter.js#L112

Along with the default fragment shader shortly after.

Thank you! I have founded it.

Share this post


Link to post
Share on other sites
On 10/19/2016 at 9:34 AM, xerver said:

Since there was so much interest in this thread, I went ahead and updated this example for v4.1.0:

https://jsfiddle.net/4kpqd3mt/1/

Note that the light's border artifacts are just because of the image used and not the shader. The image itself actually has hard edges for the light.

Thank you, you save a week of my work I think 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Recently Browsing   0 members

    No registered users viewing this page.